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Abstract. We investigate, and prove equivalent, effective versions of local

connectivity and uniformly local arcwise connectivity for connected and com-
putably compact subspaces of Euclidean space.

1. Introduction

Computability theory is concerned with the theoretical and practical limitations
of discrete computing devices as well as the effective content of mathematical theo-
rems. That is, when is the solution operator for a given class of problems amenable
to computation by a discrete computing device or susceptible to an explicitly con-
structive description? Such a theory requires precise mathematical foundations in
order to achieve rigorous demonstration of its results. For computation with dis-
crete data, such as the natural or rational numbers, the foundations laid by the
work of Turing, Church, and Kleene suffice. The interested reader may find a
historical survey of the genesis of these ideas in [6] and detailed developments in
standard texts such as [4]. These notions are also sufficient for the exploration of
the effective content of theorems in algebra. See, e.g. [5].

When one wants to consider the theorems of analysis and topology, it is essential
however to have a sound theory of computation with continuous data. Such a theory
should extend without overriding the framework for discrete data. In addition, in
it the fundamental mathematical notion of approximation should bridge the divide
between the continuous and the discrete. Several such theories are available. For
example, see [1],[10], [11], [15]. We will base our work here on the Type Two
Effectivity approach to computable analysis as developed in [16]. However, many
of our results could be translated into the framework of other approaches.

In order to investigate the effective content of a theory it is first necessary to
formulate effective versions of its basic definitions. Roughly speaking, an effective
version of a property insists that we can actually compute from any entity for which
the property holds all objects whose existence is thusly entailed. Fundamental
to topology and much of analysis are the notions of compact, closed, open, and
connected set. Effective versions of compact, closed, and open sets within the
framework of Type Two Effectivity were explored in detail by V. Brattka and K.
Weihrauch in [3]. Local connectivity perhaps sits on a lower tier than these first
four topological concepts, but nevertheless has played an important role in the
development of topology and analysis. A space is locally connected if each of its
points has a local basis of connected sets. This property plays a crucial role in the
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characterization of space-filling curves. i.e., the Hahn-Mazurkiewicz Theorem [8],
[12]. The notion of effective local connectivity first appeared in J. Miller’s paper
on effective embeddings of balls and spheres [13]. More recently, it has been used
by V. Brattka in connection with computation of functions from their graphs [2].

Here, we consider two effective versions of a cousin of local connectivity: uniform
local arcwise connectivity. Roughly speaking, a space is uniformly locally arcwise
connected if all points sufficiently close in the space can be joined by an arc of
arbitrarily small diameter. Here, an arc is a compact, connected set for which
there are exactly two points with the property that the removal of either one of
them from the set results in another connected set. There are at least two ways to
create an effective version of this notion. On the one hand, we may want to compute
how close two points need to be in order to join them by an arc of diameter below
some given value. On the other hand, we may also want to compute such an arc.
These simple observations lead to the notions of effective uniform local arcwise
connectivity and strongly effective uniform local arcwise connectivity. These are
defined precisely in Section 3.

Our main result is that on subsets of Euclidean space that are connected and
computably compact, the notions of effective local connectivity, effective uniform
local connectivity, and strongly effective uniform local connectivity are equivalent.
Roughly speaking, a subset of R2 is computably compact if it can be plotted with
arbitrary precision by a discrete computing device. A precise definition which also
covers spaces of dimension greater than two is given in Section 3. See also [2].

One interpretation of this result is that effective local connectivity provides, for
spaces which are computably compact, the precise amount of information necessary
for the computation of arcs between points in the space. Another interpretation
is that it provides an effective version of a classical result: every Peano continuum
is uniformly arcwise connected (see, e.g. [9]). By a Peano continuum is meant a
space which is compact, metrizable, connected, and locally connected.

2. Summary of pertinent notions and results from topology

The material in this section is taken from Hocking and Young [9] and Munkres
[14]. All spaces considered are subspaces of Rn.

Let d be the Euclidean metric on Rn. If X ⊆ Rn is bounded, then we let

diam(X) = sup{d(x, y) | x, y ∈ X}.

If X, Y ⊆ Rn are closed, then we let

d(X, Y ) = min{d(x, y) | x ∈ X ∧ y ∈ Y }.

Let Bε(p) denote the open ball of center p and radius ε. When, S ⊆ Rn, we let

Bε(S) =
⋃
p∈S

Bε(p).

A path is a continuous image of [0, 1]. An arc is a homeomorphic image of [0, 1].
Such a homeomorphism is called a parameterization of the arc. If A is an arc, then
there are exactly two points in A such that the removal of either one of these points
from A yields a connected set. We call these points the endpoints of A. It follows
that if f is a parameterization of an arc A, then f(0) and f(1) are the endpoints of
A. If x, y are the endpoints of an arc A, then we say that A is an arc from x to y.
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A topological space X is arcwise connected if for every distinct x, y ∈ X there
is an arc in X from x to y. On the other hand, X is pathwise connected if for
every x, y ∈ X there is a continuous function f : [0, 1] → X such that f(0) = x
and f(1) = y. It follows from the theorems discussed below that every pathwise
connected space is arcwise connected.

Suppose X is a topological space, and that a, b ∈ X. Write a ∼ b if there is a
connected set C that contains a and b. It follows that ∼ is an equivalence relation.
Its equivalence classes are called the connected components of X. We define path
component similarly by using path connected sets.

We now discuss local connectivity properties.

Definition 2.1. A topological space X is locally connected (LC) if for every p ∈ X
and every neighborhood of p, U , there is a connected neighborhood of p, V , such
that V ⊆ U .

The most pertinent results about locally connected spaces are the following.
Proofs can be found in Section 3-4 of [14].

Theorem 2.2. Let X be a topological space.
(1) X is locally connected if and only if for every open U ⊆ X, each connected

component of U is open in X.
(2) If X is locally connected, then the connected components of X are precisely

the path components of X.

Definition 2.3. A metric space (X, d) is uniformly locally arcwise connected (ULAC)
if for every ε > 0 there exists δ > 0 such that for every x, y ∈ X with d(x, y) < δ,
there exists an arc A in X from x to y whose diameter is less than ε.

A continuum is a compact, connected, and metrizable topological space. A
Peano continuum is a locally connected continuum. The most pertinent results
about Peano continua are the following. Proofs can be found in [9].

Theorem 2.4 (Hahn-Mazurkiewicz Theorem, [8], [12]). Suppose P is a sub-
space of a Hausdorff space X. Then, P is a Peano continua if and only if P is the
image of [0, 1] under a continuous map.

Theorem 2.5. Every Peano continuum is arcwise connected.

It now follows that every pathwise connected subset of Euclidean space is arcwise
connected.

By a simple application of the Lebesgue Number Theorem, one can now prove
the following.

Theorem 2.6. Every Peano continuum is uniformly locally arcwise connected.

Theorem 2.5 is proven by means of simple chains. These will be a valuable tool
for us as well. We define them here.

Definition 2.7. Let (U1, . . . , Uk) be a sequence of open sets. Then, (U1, . . . , Uk)
is a simple chain if Ui ∩ Uj 6= ∅ precisely when |i− j| ≤ 1.

We define some associated terminology.

Definition 2.8. Suppose (U1, . . . , Uk) is a simple chain. If

x ∈ U1 −
k⋃

j=2

Uj ,
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and if

y ∈ Uk −
k−1⋃
j=1

Uj ,

then we say that (U1, . . . , Uk) is a simple chain from x to y.

Definition 2.9. Suppose (U1, . . . , Uk) is a simple chain in a subspace of Rn and
that each Uj is bounded. The diameter of (U1, . . . , Uk) is the maximum of diam(U1),
. . ., diam(Un).

Definition 2.10. Suppose (U1, . . . , Uk) and (V1, . . . , Vl) are simple chains. We
say that (U1, . . . , Uk) refines (V1, . . . , Vl) if each Uj is contained in at least one of
V1, . . . , Vl.

Definition 2.11. We say that a simple chain (U1, . . . , Uk) goes straight through a
simple chain (V1, . . . , Vl) if (U1, . . . , Uk) refines (V1, . . . , Vl) and whenever Ui, Uj ⊆
Vs, then Ut ⊆ Vs whenever t is between i and j.

The pertinent facts about simple chains are the following. Proofs can be found
in Sections 3.1 and 3.2 of [9].

Theorem 2.12. If {Uα}α∈I is a covering of a connected space X by open sets, and
if x, y ∈ X, then there exist α1, . . . , αk ∈ I such that (Uα1 , . . . , Uαk

) is a simple
chain from x to y.

Theorem 2.13. Suppose X is a locally connected and connected Hausdorff space
and that (U1, . . . , Un) is a simple chain of connected open sets from a to b. Suppose
V is a collection of open sets such that each Ui is a union of elements of V. Then,
there is a simple chain of elements of V from a to b that goes straight through
(U1, . . . , Un).

3. Background from computable analysis and computable topology

A rational interval is an open interval whose endpoints are rational numbers.
An n-dimensional rational rectangle is a set of the form (a1, b1)× . . .× (an, bn)

where a1, b1, . . . , an, bn ∈ Q and ai < bi for all i. Let In be a standard computable
notation for the set of all n-dimensional rational rectangles.

We will use the following naming systems only.
(1) ρn for Rn. Intuitively, a ρn-name for a point x ∈ Rn is a list of all rational

rectangles to which x belongs.
(2) κmc for the compact subsets of Rn. Intuitively, a κmc-name of a compact

X ⊆ Rn is a list of all finite covers of X by rational rectangles each of which
contains at least one point of X. As in Section 5.2 of [16], such a covering
will be called minimal.

(3) δCO for C([0, 1], Rn). Intuitively, a δCO-name of a continuous function
f : [0, 1] → Rn is a list of all pairs of the form (I,R) such that I is a closed
rational interval, R is an n-dimensional rational rectangle, and f [I] ⊆ R.

Since these are the only naming systems we will use, we will suppress their
mention when discussing the computability of objects and functions.

We will make frequent use of the following principle: computation of maxima and
minima of continuous functions on compact sets is computable. See, e.g., Corollary
6.2.5 of [16].
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Throughout the rest of this paper, X ⊆ Rn is a fixed continuum that is computable
as a compact set.

For each z ∈ X and each open U ⊆ Rn such that z ∈ U ∩X, let Cz(U) denote
the connected component of z in U ∩ X. Before proceeding further, we make a
small observation about these components.

Proposition 3.1. If U, V are open subsets of Rn such that z ∈ U ∩ V ∩X, and if
U ⊆ V , then Cz(U) ⊆ Cz(V ).

Proof. Let C = Cz(U). Hence, C is a connected subset of U ∩X. Since U ∩X is
a subspace of V ∩X, C is a connected set in V ∩X. Since z ∈ C, it follows that
C ⊆ Cz(V ). �

The following is due to J. Miller [13].

Definition 3.2. X is effectively locally connected (ELC) if there is a computable
function f : N → N such that for every k ∈ N and every p ∈ X, X ∩ B2−f(k)(p) ⊆
Cz(B2−k(p)) ⊆ B2−k(p).

A more general version of this definition is given in [2].
We propose two effective versions of the notion of a ULAC space. The second

is, prima facie, a strengthening of the first. We will later show they are equivalent.

Definition 3.3. X is effectively uniformly locally arcwise connected (EULAC) if
there is a computable function f : N → N such that for every k ∈ N and all x, y ∈ X,
if d(x, y) < 2−f(k), then there is an arc in X from x to y of diameter at most 2−k.

In addition to knowing there there is an arc between two points of sufficiently
small diameter, we may also want to compute a parameterization of such an arc.
This leads to the following.

Definition 3.4. X is strongly effectively uniformly locally arcwise connected (SEU-
LAC) if there is a computable function f : N → N that witnesses X is EULAC and
it is possible to compute from names of x, y ∈ X such that d(x, y) < 2−f(k) a name
of a parametrization of an arc from x to y in X.

Our main result is that all three properties ELC, EULAC, and SEULAC are
equivalent for computable Euclidean continua.

4. Preliminary lemmas

Lemma 4.1. There is a computable G :⊆ Σ∗ → X such that for all w ∈ Σ∗ for
which In(w) ∩X 6= ∅, G(w) is defined and is in X ∩ In(w).

Proof. Let p be a computable name of X. For each w ∈ Σ∗, we inductively define
a sequence w0, w1, . . . as follows. Let w0 = w. Once wt has been defined, we define
wt+1 as follows. First, let v be the smallest prefix of p such that there exists w′, u

such that ι(u) / v, ι(w′) / u, diam(In(w′)) < 2−t, and In(w′) ⊆ In(wt). We then
define wt+1 to be the lexicographically least such w′. If In(w) ∩X 6= ∅, then ws is
defined for all s and can be computed from w and s. In this case, we define G(w)
to be the unique point in

⋂
s In(ws).

To show that G is computable, we define a type-two machine M as follows. Given
w ∈ Σ∗ as input, read p left to right while cycling through all numbers in N and all
words in Σ∗. Whenever s, v are found such that ws is defined and In(ws) ⊆ In(v),
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write ι(v) on the output tape. If In(w) ∩ X 6= ∅, then it follows that fM (w) is
defined and is a ρn-name of G(w). �

Recall that a Lebesgue number for a covering {Uα}α∈I of a compact set C is a
number δ > 0 such that whenever x, y ∈ C and d(x, y) < δ, there exists α ∈ I such
that x, y ∈ Uα. The Lebesgue Number Lemma asserts that every open cover of a
compact set has a Lebesgue number.

Lemma 4.2 (Computable Lebesgue Number Lemma). There is a computable
L :⊆ Σ∗ → N such that for all w ∈ Σ∗ for which

{In(u) | ι(u) / w}

is a covering of X, L(w) is defined and 2−L(w) is a Lebesgue number for this
covering.

Proof. We can assume that X contains at least two points. For, otherwise we can
choose L(w) arbitrarily.

Let u1, . . . , um be all words u such that ι(u) / w.
Since X is computable, we can compute v1, . . . , vl such that

(1) X ⊆
⋃l

j=1 In(vj),
(2) X ∩ In(vj) 6= ∅ for each j,
(3) each In(vj) is contained in some In(ui), and
(4) diam(In(vj)) < diam(X) for each j.

Note that any Lebesgue number for {In(v1), . . . , In(vl)} is a Lebesgue number
for {In(u1), . . . , In(um)}. In addition, because of (4), there exist two points in X
such that no In(vj) contains both of them.

Compute w1, . . . , wk such that

(1) X ⊆
⋃k

j=1 In(wj),
(2) In(wj) ∩X 6= ∅ for each j = 1, . . . , k, and
(3) each In(wj) is contained in some In(vi).

Let

C =
k⋃

j=1

In(wj).

Hence, X ⊆ C. At the same time {In(v1), . . . , In(vl)} is a covering of C. Note that
any Lebesgue number of this covering with respect to C is a Lebesgue number of it
as a covering of X.

Let D consist of all pairs (p, q) ∈ C ×C for which there is no i such that In(vi)
contains both p and q. Thus, D 6= ∅. We can write D as

D =
l⋂

j=1

[((C − In(vj))× C) ∪ (C × (C − In(vj))] .

It follows that D is a computably compact subset of R2n. We can thus compute

δ =df min{d(p, q) | (p, q) ∈ D}.
We claim that δ > 0. For, suppose δ = 0. Since {In(v1), . . . , In(vl)} is an open
covering of C, by the Lebesgue Number Theorem there is a number δ0 > 0 such
that any two points in C are contained in one of In(v1), . . . , In(vl) whenever the
distance between them is less than δ0. Since δ = 0, there exist (p, q) ∈ D such that
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d(p, q) < δ0. However, by definition, D ⊆ C × C. Hence, p, q ∈ C. Thus, there
exists j such that p, q ∈ In(vj). But, it then follows by definition that (p, q) 6∈ D-
a contradiction. Hence, δ > 0.

Finally, since we can compute δ, we can compute L(w) such that 2−L(w) < δ. It
follows that 2−L(w) is a Lebesgue number for

{In(v1), . . . , In(vl)}
as a covering of C. �

We note that the proof of Lemma 4.2 is not uniform in that it branches on the
case of whether X contains a single point and this can not be uniformly computed
from a name of X. We will address the issue of uniformity in more depth in Section
8. For now, we shall focus on proving that for computable continua, ELC and
EULAC are equivalent.

5. ELC and EULAC spaces

In this section, we show that X is ELC if and only if it is EULAC.

Theorem 5.1. If X is ELC, then X is EULAC.

Proof. Let f : N → N witness that X is ELC. We can assume f is increasing.
Fix m ∈ N. Since X is computably compact, we can compute w1, . . . , wk such

that {In(w1), . . . , In(wk)} is a minimal cover of X with the additional property
that the diameter of each In(wj) is smaller than 2−f(m+2). It follows from the
last inequality that In(wi) ⊆ B2−f(m+2)(y) for all y ∈ In(wi). We claim that, for
each i, there is a connected subset of X, Xi, such that In(wi) ∩ X ⊆ Xi and
diam(Xi) ≤ 2−m. To see this, for each y ∈ In(wi), let Xi,y = Cy(B2−(m+2)(y)).
Hence, for each y ∈ In(wi),

In(wi) ∩X ⊆ B2−f(m+2)(y) ∩X ⊆ Xi,y ⊆ B2−(m+2)(y).

Also, since X is locally connected, Xi,y is open in X and path connected. Hence,
Xi,y is arcwise connected. We then let

Xi =
⋃

y∈In(wi)∩X

Xi,y.

Hence, Xi ⊇ In(wi)∩X. Suppose z0, z1 ∈ Xi. Then, there exist y0, y1 ∈ In(wi)∩X

such that zj ∈ Xi,yj
for each j. Since In(wi)∩X ⊆ Xi,y, it follows that y1 ∈ Xi,y0 .

Hence, there is an arc in Xi,y0 from z0 to y1, and an arc in Xi,y1 from y1 to z1. It
follows that Xi is path connected and hence arcwise connected. Since

Xi,y ⊆ B2−(m+2)(y) ⊆ B2−(m+2)(In(wi))

for each y ∈ In(wi) ∩X, and since

diam(In(wi)) < 2−f(m+2) < 2−(m+2),

it also follows that diam(Xi) < 2−m.
By Lemma 4.2, we can compute g(m) ∈ N so that 2−g(m) is a Lebesgue number

for the covering
{In(w1), . . . , In(wk)}.

It follows that if d(x, y) < 2−g(m), then there exists i such that x, y ∈ In(wi) and
so x, y are connected by an arc in X of diameter at most 2−m. �
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We now prove the converse of Theorem 5.1 holds for computable Euclidean
continua.

Theorem 5.2. If X is EULAC, then X is ELC.

Proof. Let g witness that X is effectively uniformly locally arcwise connected. We
claim that g witnesses that X is effectively locally connected. For, let n ∈ N, and
let y ∈ X. Let C = Cy(B2−n(y)). We claim that X ∩ B2−g(n)(y) ⊆ C. For, let
z ∈ B2−g(n)(y). Then, there is an arc from y to z in X of diameter less than 2−n. If
this arc were to contain a point not in B2−n(y), then its diameter would be at least
as large as 2−n. Hence, this arc is entirely contained in B2−n(y). Thus, z ∈ C. �

It now follows that if X is SEULAC, then X is ELC.
It only remains to show that every EULAC space is SEULAC. To do so, we will

need the tools in the next section.

6. Witnessing chains and arc chains

In this section, we assume X is ELC. Fix a function f : N → N that witnesses
that X is ELC.

Definition 6.1. A witnessing chain is a sequence (m,w, w1, . . . , wk) such that
• In(wi) ∩ In(wi+1) ∩X 6= ∅,
• B2−m(In(wi)) ⊆ In(w), and
• diam(In(wi)) < 2−f(m).

We should note that a witnessing chain is not a chain of sets but a formal repre-
sentation of a chain of sets. We now make some notation. Let ω = (m,w, w1, . . . , wk)
be a witnessing chain. We let:

Vω =
k⋃

i=1

B2−m(In(wi))

mω = m

kω = k

wω,j = wj

wω = w

Proposition 6.2. Suppose ω = (m,w, w1, . . . , wk) is a witnessing chain and that
1 ≤ j ≤ k. Then, for all x, y ∈ In(wj) ∩X,

Cx(B2−m(In(wi))) = Cy(B2−m(In(wi))).

Proof. Let U = B2−m(In(wi)). Since diam(In(wi)) < 2−f(m), it follows that y ∈
X ∩B2−f(m)(x). Since B2−f(m)(x) ⊆ U , it follows that

Cx(B2−m(x)) ⊆ Cx(U).

Since X ∩ B2−f(m)(x) ⊆ Cx(B2−m(x)), it follows that y ∈ Cx(U). Hence, Cx(U) =
Cy(U). �

We make some more notation regarding witnessing chains. Suppose ω is a wit-
nessing chain and that 1 ≤ i ≤ kω. We let

Cω,i = Cx(B2−mω (In(wω,i))
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for any x ∈ In(wi) ∩X. Hence, Cω,i is a connected open subset of X. In addition,
Cω,i ∩ Cω,i+1 6= ∅ if i < kω. It follows that

Cω =df

k⋃
j=1

Cω,j

is an open connected subset of X, and

Cω ⊆ Vω.

Lemma 6.3. For every x, y ∈ In(w) ∩ X, x and y are in the same connected
component of In(w)∩X if and only if there is a witnessing chain (m,w, w1, . . . , wk)
with x ∈ In(w1) and y ∈ In(wk). Furthermore, if x, y are in the same connected
component of In(w) ∩X, then for every ε > 0, there is such a witnessing chain ω
for which it is also true that −mω < ln(ε).

Proof. Suppose x and y are in the same connected component of In(w)∩X. Let A
be an arc from x to y such that A ⊆ In(w)∩X. Choose m so that d(A, Rn−In(w)) ≥
2−(m−1) and 2−m < ε. For all p ∈ A, choose u so that p ∈ In(u), In(u) ⊆
B2−m(p) ⊆ In(w), and diam(In(u)) < 2−f(m). From these rectangles, we can
choose In(u1), . . . , In(uk) that cover A and such that (In(u1)∩A, . . . , In(uk)∩A)
is a simple chain. Since d(A, Rn−In(w)) ≥ 2−(m−1), and since In(ui) ⊆ B2−m(p) for
some p ∈ A, it follows that B2−m(In(ui)) ⊆ In(w). It follows that (m,w, u1, . . . , uk)
is a witnessing chain.

Conversely, suppose we have a witnessing chain ω = (m,w, w1, . . . , wk) such that
x ∈ In(w1) and y ∈ In(wk). Then, x, y ∈ Cω. Thus, x, y are in the same connected
component of In(w) ∩X. �

Definition 6.4. Suppose ω = (m,w, w1, . . . , wk) is a witnessing chain. If x ∈
In(w1) ∩X, and if y ∈ In(wk) ∩X, then we say that ω witnesses that x, y are in
the same connected component of In(w) ∩X.

We note that the set of witnessing chains is computably enumerable.

Definition 6.5. An arc chain is a sequence of the form (ω1, . . . , ωl) where
• ωj is a witnessing chain,
• (Vω1 , . . . , Vωl

) is a simple chain, and
• X ∩ In(wωi,kωi

) ∩ In(wωi+1,1) 6= ∅.

We note that the set of arc chains is computably enumerable.
We make some notation. Let p = (ω1, . . . , ωl) be an arc chain. We let:

lp = l

ωp,j = ωj

Vp,j = Vωp,j

Cp,j,i = Cωj ,i

Cp,j = Cωj

Cp =
⋃
j

Cp,j

Definition 6.6. Suppose p0 and p1 are arc chains. We say that p0 refines p1 if
(Vp0,1, . . . , Vp0,lp0

) refines (Vp1,1, . . . , Vp1,lp1
). We say that p0 goes straight through

p1 if (Vp0,1, . . . , Vp0,lp0
) goes straight through (Vp1,1, . . . , Vp1,lp1

).
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Definition 6.7. If p is an arc chain, then the diameter of p is defined to be the
diameter of the simple chain (Vp,1, . . . , Vp,lp).

Definition 6.8. If p is an arc chain such that (Vp,1, . . . , Vp,lp) is a simple chain
from x to y, then we say that p is an arc chain from x to y.

Theorem 6.9. Suppose p is an arc chain from x to y. Then, for every ε > 0, there
is a refinement of p of diameter less than ε that is also an arc chain from x to y
and that goes through p.

Proof. Let ωi = ωp,i. Let

wi = wωi

mi = mωi

ki = kωi

wi,j = wωi,j

l = lp

Let x0 = x, xl = y, and let

xi ∈ In(wi,ki
) ∩ In(wi+1,1) ∩X

for 0 < i < l. Hence, xi−1, xi are in the same connected component of Vωi
∩X for

i = 1, . . . , l.
Let B1 be an arc in Cω1 from x0 to x1. There exists q1 ∈ B1 such that every

point on B1 between q1 and x1 is in In(w1,k1) ∩ In(w2,1) ∩X. There exist s1 ∈ N
and x1,0, . . . , x1,s1 ∈ B1 with the following properties.

• x1,0 = x0.
• x1,s1 = x1.
• x1,i is between x1,i−1 and x1,i+1 on B1,
• q1 is between x1,s1−1 and x1,s1 on B1.
• d(x1,i, x1,i+1) < ε/3.

Let B1,j be the arc on B1 from x1,j−1 to x1,j for j = 1, . . . , s1.
Now, let D be the result of removing the arc on B1 from x0 to q1 from Cω2 .

Hence, D is open in X. We claim that there is an arc in D from x1 to x2. For, let g
witness that X is EULAC. For each p ∈ D, let εp > 0 be such that Bεp(p)∩X ⊆ D.
Let mp be such that −mp < ln(εp). Let Up = B2−g(mp)(p) ∩ X. Then, there is a
simple chain Up1 , . . . , Upk

such that x1 ∈ Up1 and x2 ∈ Upk
. It follows that there is

a path in D from x1 to x2. It then follows that there is an arc in D from x1 to x2.
Call this arc B2. Note that the intersection of B2 and B1 is contained in the arc
on B1 from q1 to x1.

Choose q2 so that every point on B2 between q2 and x2 is in In(w2,k2)∩In(w3,1)∩
X. There exists s2 ∈ N and x2,0, . . . , x2,s2 ∈ B2 such that

• x2,0 = x1,
• x2,s2 = x2,
• x2,i is between x2,i−1 and x2,i+1 on B2,
• q2 is between x2,s2−1 and x2,s2 on B2, and
• d(x2,i, x2,i+1) < ε/3.
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We repeat this procedure with Vω3 , . . . , Vωl
. We obtain arcs

B3, . . . , Bl, B3,1, . . . , Bl,sl
,

and points
x3,0, . . . , xl,sl

, q3, . . . , ql−1.

The distance between any two non-adjacent arcs in {B1,1, . . . , Bl,sl
} is positive. Let

δ be a positive lower bound on these distances.
We form a witnessing chain ωi,t as follows. First of all, choose m such that

2−m < min{δ/8, ε/3}. We then choose w1, . . . , wk with the following properties.

• B2−m(In(wj)) ⊆ Vωi
,

• In(wj) ∩ In(wj+1) ∩Bi,t 6= ∅,
• diam(In(wj)) < 2−f(m),
• Bi,t ⊆

⋃
j In(wj), and

• xi,t−1 ∈ In(w1) ∩X, and xi,t ∈ In(wk) ∩X.

Choose w such that B2−m(In(wj)) ⊆ In(w) for all j. Let ωi,s = (m,w, w1, . . . , wk).
It follows that (Vω1,1 , . . . , Vωl,sl

) is a simple chain that refines and goes straight
through (Vω1 , . . . , Vωl

). In addition, its diameter is less than ε. In addition,

xi,j ∈ In(wωi,j ,kωi,j
) ∩ In(wωi,j+1,1) ∩X,

and
x1,s1 ∈ In(wω1,s1 ,kω1,s1

) ∩ In(wωi+1,1,1) ∩X.

It follows that (ω1,1, . . . , ωl,sl
) refines and goes straight through (ω1, . . . , ωl). �

We are now in position to complete the proof of our main result.

7. Every EULAC space is SEULAC

Theorem 7.1. If X is EULAC, then X is SEULAC.

Proof. Suppose X is ELC. Let g : N → N witness that X is EULAC. We assume g
is increasing. Let f(m) = g(m + 1). Therefore, as in the proof of Theorem 5.2, f
witnesses that X is EULAC, and f witnesses that X is ELC.

Now, let w ∈ Σ∗ and p, r ∈ Σω be given as input. Assume w ∈ dom(νN), and let
m = νN(w). Read p, r while cycling through Σ∗ until u, v, w′ are found such that

ι(u) / p

ι(v) / r

In(u) ∩X 6= ∅
In(v) ∩X 6= ∅

In(u), In(v) ⊆ In(w′)
diam(In(w′)) < 2−m

d(In(u), In(v)) < 2−f(m)

d(In(u), Rn − In(w′)) ≥ 2−(m+1)

d(In(v), Rn − In(w′)) ≥ 2−(m+1)
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Let x = ρn(p), and let y = ρn(r). Hence, there is an arc from x to y of diameter less
than 2−(m+1). Also, any such arc is contained in In(w′). In addition, the diameter
of any arc from x to y contained in In(w′) is less than 2−m.

From p, r, we can compute a sequence of arc chains p0, p1, . . . with the following
properties. For the sake of stating these properties more compactly, let Vi,j = Vpi,j

and li = lpi .
(1)

⋃
j Vi,j ⊆ In(w′),

(2) pi+1 refines and goes straight through pi.
(3) The diameter of pi is less than 2−i.
(4) There exists u such that ι(u) / p and

In(u) ⊆ Vi,1 −
⋃

2≤j≤li

Vi,j .

(5) There exists v such that ι(v) / r and

In(v) ⊆ Vi,li −
⋃

2≤j≤li

Vi,j .

Let

s(i + 1, 0) = 0
s(i + 1, t + 1) = max{j | ∀j′ ∈ (s(i + 1, t), j] Vi+1,j′ ⊆ Vi,t+1}.

As we compute p0, p1, . . ., we simulataneously compute an array of rational in-
tervals {Ii,j}i,j=1,...,li such that the following hold.

• {Ii,j}j=1,...,li is a simple chain that covers [0, 1].
• {Ii+1,j}j refines {Ii,j}j .
• limi→∞maxj diam(Ii,j) = 0.
• Ii+1,j′ ⊆ Ii,j if and only if s(i + 1, j − 1) < j′ ≤ s(i + 1, j).

Let r′ ∈ Σω suitably encode a list of all pairs (I, J) such that Ri,j ⊆ J and
I ⊆ Ii,j for some i, j.

We claim that r′ is a name of a function f . For, let x ∈ [0, 1]. We claim there
exists z ∈ X such that z ∈ In(v) for all v such that (I, In(v)) is listed by r′

for some I. By way of contradiction, suppose otherwise. It follows that there exist
(i1, j1), . . . , (it, jt) such that x ∈ Ii1,j1∩. . .∩Iit,jt but Vi1,j1∩. . .∩Vit,jt = ∅. It follows
that Ii1,j1 , . . . , Iit,jt are not linearly ordered by inclusion (otherwise, Vi1,j1 , . . . , Vit,jt

would be). Suppose Ia,b and Ic,d are two ⊆-minimal intervals in this set. Without
loss of generality, suppose a ≤ c. There exist unique b′ such that Ic,d ⊆ Ia,b′ . It
follows that |b − b′| = 1. Since {Ii,j}j is simple, it now follows that there are at
most two such ⊆-minimal intervals. Suppose Ia,b and Ic,d are these intervals. There
exists d′ such that |d− d′| = 1 and Ic,d′ ⊆ Ia,b. Choose z ∈ Vc,d′ ∩ Vc,d ∩X. It now
follows that z ∈ Vi1,j1 ∩ . . . ∩ Vit,jt ∩X- a contradiction.

Hence, there exists z ∈ X such that z ∈ In(v) for all v such that (I, In(v)) is
listed by r′ for some I. Since diam(Vi,j) < 2−i, it now follows that z is unique.
Hence r′ is a name of a function f .

We now claim f is one-to-one. To this end, we first note that f [Ii,j ] ⊆ Vi,j .
Let 0 ≤ x1 < x2 ≤ 1. There exist i, j1, j2 such that x1 ∈ Ii,j1 , x2 ∈ Ii,j2 , and
|j1 − j2| > 1. Hence, Vi,j1 ∩ Vi,j2 = ∅.

Since x ∈ Vi,1 and y ∈ Vi,li , it follows that f(0) = x and f(1) = y. This
completes the proof. �



EFFECTIVE VERSIONS OF LOCAL CONNECTIVITY PROPERTIES 13

The above proof not only constructs an arc from x to y, but in addition it
constructs a parameterization of that arc. We note that J. Miller has constructed
an arc that is computable as a compact subset of R2 and has computable endpoints
but has no computable parameterization [13]. Recently, Gu, Lutz, and Mayordomo,
have strengthened this result by constructing an arc A such that any computable
function f of [0, 1] onto A retraces itself infinitely often [7].

The following has already been claimed by J. Miller in [13].

Corollary 7.2. An arc A ⊆ Rn has a computable parameterization if and only if
it is computable as a compact set and is effectively locally connected.

8. Prospects for uniformity

Thus far, we have concentrated on non-uniform results. That is, we have merely
proven that when certain given data are computable then some other associated
data are necessarily computable as well. In contrast, a uniform result shows that
the associated data can be computed by a single Turing machine from the given
data even when the given data are not computable. Such results should always be
sought since they have the widest range of applicability.

Our results are all based on Lemma 4.2, the Computable Lebesgue Number
Lemma. As noted before, our proof of this result is not uniform. However, it is
easily checked that it can be made uniform if we exclude single-point spaces. This
is a sufficiently wide range of application. Hence, throughout the rest of this section,
X is a non-degenerate continuum in Rn.

When passing from non-uniform to uniform results, one must sometimes revise
the underlying effective notions so as to merely isolate the essential data without
imposing the restriction of computability. This leads to the following.

Definition 8.1. A local connectivity witness for X is a function f : N → N such
that for all k ∈ N and all x ∈ X, X ∩B2−f(k)(x) ⊆ Cx(B2−k(x)).

Definition 8.2. A uniformly local arcwise connectivity witness for X is a function
f : N → N such that for all k ∈ N and all x, y ∈ X, if d(x, y) < 2−f(k), then x, are
joined by an arc in X of diameter less than 2−k.

Definition 8.3. A pair (f, g) is called a strong witness of uniformly local arcwise
connectivity for X if f witnesses the uniformly local arcwise connectivity of X and
if g :⊆ N × Σω × Σω × Σω → Σω is such that whenever k ∈ N and p, q are names
of points x, y ∈ X respectively such that d(x, y) < 2−f(k), g(k, p, q) is a name of a
parameterization of an arc in X from x to y.

We now state the uniform versions of our results. The proofs are simple and
standard modifications of those of the corresponding non-uniform results.

Lemma 8.4 (Uniformly Computable Lebesgue Number Theorem). From
a natural number n, a name of a non-degenerate continuum X ⊆ Rn, and a w ∈ Σ∗

such that
{In(u) | ι(u) / w}

is a covering of X, it is possible to compute a natural number k with the property
that 2−k is a Lebesgue Number for this covering of X.

Theorem 8.5. Each of the following can be uniformly computed from the other.
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(1) A natural number n, a name of a non-degenerate continuum X ⊆ Rn, and
a local connectivity witness for X.

(2) A natural number n, a name of a non-degenerate continuum X ⊆ Rn, and
a strong witness of uniformly local arcwise connectivity for X.

Acknowledgement

The second author thanks his wife Susan for her support.

References

[1] E. Bishop and D.S. Bridges, Constructive analysis, Springer (Berlin), 1985.

[2] V. Brattka, Plottable real number functions and the computable graph theorem, SIAM Journal

on Computing 38 (2008), no. 1, 303–328.
[3] V. Brattka and K. Weihrauch, Computability on subsets of euclidean space i: closed and

compact subsets, Theoretical Computer Science 219 (1999), no. 1-2, 65–93.

[4] M. Davis, Computability and unsolvability, McGraw-Hill, 1958.
[5] Y. L. Ershov, S.S. Goncharov, A. Nerode, J.B. Remmel, and V. W. Marek (eds.), Handbook

of recursive mathematics. vol. 2. recursive algebra, analysis, and combinatorics, Studies in

Logic and the Foundations of Mathematics, vol. 139, North-Holland, Amsterdam, 1998.
[6] S. Feferman, Turing’s thesis, Notices of the American Mathematical Society 53 (2006), no. 10,

1200–1206.

[7] X. Gu, J.H. Lutz, and E. Mayordomo, Curves that must be retraced, CCA 2009, Sixth In-
ternational Conference on Computability and Complexity in Analysis (A. Bauer, R. Dill-

hage, P. Hertling, K. Ko, and R. Rettinger, eds.), vol. 353, Informatik Berichte, no. 7, Fern-
Universität in Hagen, 2009, pp. 147 – 158.

[8] H. Hahn, Mengentheoretische characterisierung der stetigen kurven, Sitzungsberichte Akad.

Wiss. Wien Abt. IIa 123 (1914), 2433–2489.
[9] J. G. Hocking and G.S. Young, Topology, Dover, 1961.

[10] I. Kalantari and L. Welch, Point-free topological spaces, functions, and recursive points. filter

foundation for recursive analysis i, Annals of Pure and Applied Logic 93 (1998), 125–151.
[11] , Recursive and nonextendible functions over the reals. filter foundation for recursive

analysis ii, Annals of Pure and Applied Logic 98 (1999), 87 – 110.

[12] S. Mazurkiewicz, Sur les lignes de jordan, Fund. Math. 1 (1920), 166–209.
[13] J. Miller, Effectiveness for embedded spheres and balls, CCA 2002, Computability and Com-
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